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Abstract. A class of exact even and odd parity solutions of the Schrodinger equation for 
the interaction px2 + Ax4 + 7x6. 7 > 0 is obtained in the form (polynomial) X (exponential) 
when p, A and r )  satisfy some specific relations. In the general case the eigenvalues of the 
bounded potential problem are found by the method of series solution for any value of 9. 
We have also shown that the analytic continued fraction method does not always lead to 
the correct results. 

1. Introduction 

The problem of the quantum anharmonic oscillator has been the subject of much 
discussion (Banerjee et a1 1978, Bender and Wu 1969, Loeffel er a1 1970, Fung er a1 
1978, Drummond 1981, Biswas er a1 1971, 1973, Halpern 1973, Bozzolo er a1 1982, 
Killingbeck 1978, Austin and Killingbeck 1982, Hioe and Montrol 1975, Hioe et a1 
1978), both from the analytical and the numerical point of view, because of its 
importance in quantum field theory (Boyd 1978) and molecular physics (Chan and 
Stellman 1963, Reid 1970). The energy levels perturbation calculation (Bender and 
Wu 1969) of the Ax4 anharmonic oscillator gives rise to a divergent series in terms of 
the parameter A. The Borel-Pad6 methods (Simon 1970, Graffi er a1 1970, Graffi and 
Greechi 1978, Loeffel er a1 1970) have been used to obtain finite results for the energy 
correction. The eigenvalues of the anharmonic oscillators of type t)x2"' have been 
calculated by Biswas et a1 (1971, 1973) using the Hill determinant method. Some other 
approximation procedures to the anharmonic oscillator problem are W K B  techniques 
(Lu et a1 1973, Seetharaman et a1 1982, Bender er a1 1977), approximate canonical 
transformation (Halpern 1973), convergent perturbation theory (Turbiner 198 l ) ,  vari- 
ational techniques (Bozzolo et a1 1982, Bazley and Fox 1961) and logarithmic perturba- 
tion expansion (Dolgov er a1 1980, Aharonov and Au 1979, Au 1980, Au er a1 1983). 

The doubly anharmonic oscillator of the type 

V ( X )  = p x 2  +Ax4 + 7x6, t) > 0 ( 1 )  

is of great interest in scalar field theory (Aragao de Carvalho 1977, Sobelman 1979). 
Sobelman uses double series perturbation expansions for both the eigenfunction and 
the eigenvalue in terms of the two coupling constants A and 7. These series converge 
for A > 0, 7 > 0 and for A < 0, p > A/47. Flessas (1979) and Flessas and Das (1980) 
have presented exact solutions, valid for positive and negative A, of the Schrodinger 
equation for the doubly anharmonic oscillator. Recently Flessas (1981) has obtained 
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solutions with an essentially different form from (polynomial) x (exponential). These 
are valid if two relations between p, A and 7 hold whence A < 0 follows. Khare (1981) 
has shown that Rayleigh-Schrodinger perturbation theory may not be applicable for 
the potential when A < 0. 

The problem of the doub!y anharmonic oscillator ( 1 )  has been studied extensively 
by Singh et a1 (1978) using the theory of continued fractions (Wall 1948). They have 
shown that the energy eigenvalues of the oscillator occur as poles in the energy plane 
of an infinite continued fraction, which is defined as the Green function for the problem. 
In this paper we have shown that the analytic continued fraction method, or equivalently 
the Hill determinant method, may lead to incorrect results for some values of the 
coupling constants. We have systematically studied the exact even and odd parity 
solutions in the form of products of exponential and polynomial functions of x. For 
the existence of these types of solutions it is necessary that p, A and 1) are related. 
We describe this method in 9 2 and point out the drawbacks of the Hill determinant 
method. 

Recently the anharmonic oscillators of type 7x2"', bounded by infinite potentials 
at x = * L ,  have been studied (Chaudhuri and Mukherjee 1983, 1984, Barakat and 
Rosner 1981) by the series solution method and it has been shown that the lower-order 
eigenvalues tend rapidly to the values of the unbounded oscillator as L is made larger. 
In 9 3 we describe the finite box approximation for the potential V(x) given by ( l ) ,  
with positive 7 and positive or negative p and A. In § 4 we discuss the scale transforma- 
tion property of the Hamiltonian which can be used to find the eigenvalues for arbitrarily 
large positive values of 7. 

2. Exact solution to the Schrodinger equation 

The Schrodinger equation 

( -d2/dx2 + V(X))$(X) = E $ ( x )  

with the potential V(x) given by ( 1 )  is transformed to the following form 

d 2 4  d 4  -+2(-ax3 + P x )  - + [ ( p 2  - 3a - p ) ~ '  + ( E  +@)I4 = O 
dx2 dx  

by making the substitution 

+(x)  = exp(-aax4 +$x2)4(x)  

where 
I- 

- 

f f = & p o ,  p = -;AI4 1) 

It is clear from (3) that x = 0 is an ordinary point and x = cc is an irregular singular 
point of this differential equation. Therefore equation (3) admits a convergent series 
solution 

cc 

4 ( x )  = AnxZfleL' 
f I = O  

valid in the region 1x1 <a. In ( 5 )  we set v = 0 for the even parity solutions and v = 1 
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for the odd parity solutions. The coefficients A,  satisfy the difference equation 

( 2 n  +2  + v)(2n + 1 + v ) A , + ,  + [ E  + p ( 4 n  + 1 + 2 v ) ] A ,  

+ [ p 2  - p - (4n - 1 + 2 v ) a ] A ,  -, = 0, n 3 O  (6) 

with A- ,  = 0. By repeated application of this equation we can express all the coefficients 
in terms of A,  

A,  = ( -1)"D,Ao/(2n + v)! (7) 

where D, is an n x n determiant: 

The non-zero tridiagonal matrix elements b,  of equation ( 8 )  are given by 

b I , = E + ( 4 i - 3 + 2 v ) P  (9a )  

b, I + I  = ( 2 i +  v ) ( 2 i -  1 + v) (9b )  

b , , - ,  = p 2 - p - ( 4 i - 5 + 2 v ) a  (9c )  

with i = 1, 2,  3 ,  . . . . D, as n + CO is the Hill determinant. The necessary and sufficient 
condition for solving (6) is that non-trivial A,  exist, and for this the infinite Hill 
determinant must vanish. The D, satisfy the following difference equation 

D, = [ E  +( 4n-3+2v)P]D, . . . ,  

- [ p * - - p  - (4n - 5 + 2 v ) a ] ( 2 n  - 2 + v ) ( 2 n  - 3  +v)D,-~. (10) 

According to Singh et a1 (1978) the zeros of D, in the energy parameter E determine 
the energy eigenvalues of the problem when n +CO. Firstly one notes that the ratio 
/D , /D , - I I+O(n3 '2 )  for large n and therefore D, forms a divergent sequence. It is 
impossible to numerically evaluate D, for very large n using the Hill determinant 
method, this being one of its serious drawbacks. If we put p > 0 and p = 0 or A -- 0 in 
(10) we find that 

D ,  = E, D 2 = E 2 + [ p  + ( 3 + 2 v ) a ] ( 2 + v ) ( l  + v )  

and all higher-order determinants are positive for positive values of E. Thus D, will 
never vanish for any positive value of E. But the potential p x 2  + 7x6 with both p and 
77 > 0 goes to +CO as 1x1 + CO and therefore the eigen-energy should go to $00. It is well 
known that all the eigenvalues are positive for this problem. Thus the Hill determinant 
method of Singh et a1 (1978) has only a limited domain of applicability in the plane 
of couplings. 

It has been pointed out (Flessas 1982, Chaudhuri 1983, Masson 1983) that all the 
eigenvalues determined by the Hill determinant method should not be allowed since 
the boundary condition $(x) + 0 as 1x1 + CO is not incorporated into the method. Since 
x = 03 is an irregular singular point of the differential equation the series ( 5 )  may not 
be valid at x = * m  and therefore the boundary conditions at x = f m  may not be 
satisfied by the wavefunction. The boundary conditions are satisfied when the series 
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bn+, n + l  b n + l  n+Z 0 . . .  
IBJ= b n + z  n i l  b n + 2  n + 2  bn+2n+3 ... . . . 

( 5 )  terminates. From ( 6 )  it is clear that when A,, = 0 and 

p 2 - p  -(4n - 1 + ~ Y ) C Y  = O  (11)  

A,,,, = A,,+2 = . . . = 0 and 4 ( x )  will reduce to a polynomial. Equation ( 1  1 )  gives us 
the relation between p, A and 7 that should be satisfied for polynomial solution of 
4 ( x ) .  The condition for A,, to vanish is D,, = 0 (from (7)) which gives n number of 
eigenvalues. Under the condition ( I  1 )  the infinite Hill determinant reduces to 

. 

We obtain n eigen-energies and well behaved eigenfunctions from the vanishing of 
IAl or D,. This immediately raises the question of what happens to the remaining 
eigenvalues as there must be an infinite number of solutions. Singh et a1 (1978) 
conjectured that the remaining solutions are obtained from the zeros of the infinite 
determinant B. We would like to show that this conjecture may lead to incorrect results. 

When b,+, = 0 or the condition ( 1  1 )  is satisfied, the n eigenvalues are obtained 
from the vanishing of D, (8) and the eigenfunctions (apart from the exponential x 
factor) are given by 

n-1 
4 ( x ) =  AmxZmt” 

m=O 

with A ,  as obtained from (7). If B, is the first r x r  determinant of B then we have 
in the general case ( 1  1 )  

B, = { E  +[4( n + r )  - 3 +2v]p} B , - ,  

+ 4 ( r - 1 ) ( 2 n + 2 r - 2 + ~ ) ( 2 n + 2 r - n + ~ ) ~ ~ B , - ~  (15) 

with Bo = 1 and B l  = E +(4n + 1 +2v)p. 
If p > 0 all the determinants B , ,  B2 are positive when E > 0. But the potential (1 )  

has an infinite number of discrete eigenvalues, most of which are positive (Powell and 
Crasemann 1953). Thus the conjecture of Singh et a f  is not correct for negative A. 
The correct eigenvalues may be obtained by an analytic continuation of the continued 
fraction, accomplished with the aid of modified approximants (Masson 1983). The 
condition of wavefunction normalisation should be imposed (Chaudhuri 1983) as well 
as the eigenvalue condition. 

3. Series solution 

As in our previous two papers (Chaudhuri and Mukherjee 1983, 1984) we put infinitely 
high potentials at x = * L so that the boundary conditions become (L(kL) = 0, which 
do not pose any problem for the series solution of equation (2).  We make the change 
of variable y = x /  L and write the wavefunction $ ( y )  as convergent even and odd 
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power series: 

Substituting (16) into ( 2 )  we obtain the following recurrence relation satisfied by A ,  

( 2 n  + v ) ( 2 n  + Y - 1)A,  (17) - u A , - ~ -  bA,-, - CA,-,  = 0, n s l  

with 
E = EL', a = p ~ ~ ,  b = AL6, 

c = TL8, A - ,  = A - , = A - 3 = 0 .  

If ~ A , / A , - l ~ + O ( n ' )  as n +a, we find from (17) that S = -f which shows that A ,  
forms a convergent sequence. The zeros of the functions 

with Y = 0 and 1 ,  give us the eigenvalues of the even and odd parity solutions. In table 
1 the first four eigenvalues of the confined ( p x 2  + Ax4 + vx6) oscillator are shown, with 
7) = 1 ,  p, A = - 2 , 0 , 2  and L = 1 , 2 , 3 .  Our values for L = 3 are also compared with the 
eigenvalues for the unbounded oscillators available in the literature. It is found that 
agreement is excellent. 

4. Large q behaviour of the eigenvalues 

The Hamiltonian 

H ( p ,  A, T / ) = - ~ ~ / ~ x ~ + ~ x ~ + A x ~ + T x ~  

has the following scale transformation property 

H ( p ,  A, 77) = 7)1'4H(p7)-1'2, A7) -3 /4 ,  1 )  
so that 

H ( P ,  A, 7)) - T+Cc' 7?1/4H(0, 0, 1 )  (21)  

where H ( 0 ,  0, 1 )  is the Hamiltonian for the pure x6 oscillator. The eigenvalues of the 
pure xZm oscillator have already been discussed (Chaudhuri and Mukherjee 1983). 
Due to the scale transformation property (21) it is easy to find the eigenvalues of 
H ( p ,  A, 7) for large T/  if the eigenvalues of H(O,O, 1)  are known. 

Equation ( 2 )  can be written as 

(-d2/dU2+ p ' p ' + A ' ~ ~ +  u6)$ = E'$ ( 2 2 )  
where 
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Table 1. The first four eigenvalues for the bounded potential px2+ Ax4+ vx6 with 7 = 1, 
p, A = -2, 0, 2 and L = I ,  2, 3 and those of the unbounded (L+ CO) oscillator. 

Unbounded 
oscillator 

CL A L =  I 1. = 2 1=3 ( L + = )  

-2.0 -2.0 

0.0 

2.0 

0.0 -2.0 

0.0 

0.0 2.0 

2.0 -2.0 

2.0 0.0 

2.0 

2.1326 
9.1226 

2 1.3697 
38.5977 

2.2203 
9.3553 

21.6763 
38.9476 

2.3053 
9.5882 

2 1.9945 
39.2967 

2.4025 
9.6966 

21.9718 
39.2367 

2.4852 
9.9256 

22.2959 
39.5877 

2.5656 
10.1504 
22.6 I O  1 
39.9387 

2.6626 
10.26 14 
22.6022 
39.8782 

2.7408 
10.4846 
22.9 175 
40.2303 

2.8168 
10.7040 
23.2300 
40.5830 

-0.9160 
0.0060 
3.8978 
8.5944 
0.4424 
2.8060 
7.2632 

12.8723 
1.0002 
4.3739 
9.7477 

16.2767 
0.4040 
2.2397 
5.8919 

10.9284 
1.1455 
4.3428 
9.0879 

14.99 I O  
1.5291 
5.6057 

11.3210 
18.1704 

1.2455 
4.09 15 
8.0091 

13. I866 
1.6974 
5.6868 

10.8453 
17.0692 

1.9792 
6.7235 
12.8272 

19.9861 

- I .oooo -1;  
-0.1537 

3.6281 
8.0150 
0.4401 
2.7960 
7.2312 

12.7785 
1 .oooo I t  
4.3730 
9.7436 

16.2618 
0.3853 
2.1741 
5.7310 

10.6341 
1.1448 1.144 802i 
4.3386 4.338 60$ 
9.0730 

14.9350 
1.529 I 
5.6053 

11.3188 
18. I509 

1.2410 
4.0788 
7.9008 

13. I302 
1.6972 1.697s 
5.6850 
10.8366 10.8369 

17.0235 
1.9790 
6.7220 

12.826 I 
19.9792 

D ,  = 0 (equation (12)) 
i Turbiner (1981). 
0 Biswas et a/ (1973). 

It is clear from (23) that p‘ ,  A ’  and E’ decrease with increasing 7 and therefore for 
finding the energy eigenvalues of the interaction ( 1) it will be convenient to use equation 
( 2 2 )  when 7 > 1. 

In table 2 we present the eigenvalues E , ( p ,  A, 77) of the Hamiltonian H ( p ,  A, 7 )  
when 7 is large for L = 3, and compare with the asymptotic ( 7  + C O )  values given by 
77”4E,(0, 0, 1) .  We also compute the percentage error involved in using the asymptotic 
formula in the eigenvalues of the Hamiltonian H ( p ,  A, 7) .  It is found that the error 
is given empirically by A,qm where m -- -0.5 and  A, decreases with increasing n. 
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Table 2. The first four eigenvalues of the potential x2 + r)x6 for large values of r ) :  A, the 
bounded potential ( L  = 3 ) ;  E, the asymptotic ( r )  --*a) values; C, the unbounded oscillator 
(Biswas et al 1973). 

The present Unbounded 
calculation oscillator 

x 100 for L = 3  L - x  r ) 1 / 4 ~ , ( ~ , o ,  I )  
17 A C B A 

IO 

1 o2 

1 o3 

I o4 

I o5 

I o6 

IO’ 

2.2057 
8.1148 

16.6412 
27.1551 

3.7170 
13.9462 
28.9772 
47.5650 

6.4924 
24.5253 
51.1825 
84.1756 
I I A788 
43.4578 
90.82 I3 

149.4579 
20.3751 
77.1928 

161.3957 
265.6488 

36.21 16 
137.2212 
286.9447 
472.3251 

64.3824 
243.990 1 
510.233 1 
839.8852 

2.205 72 2.0358 
7.7152 

16.641 21 16.1344 
26.5589 

3.71697 3.6202 
13.7199 
28.6916 
47.229 I 

6.4377 
24.3977 
51.0217 
83.9866 
11.4480 
43.3860 
90.7308 

149.3517 
20.3577 
77.1524 

16 1.3447 
265.5890 

36.201 7 
137.1985 
286.9159 
472.2914 

64.3768 
243.9774 
510.2167 
839.8661 

7.703 
4.924 
3.045 
2.196 
2.604 
1.623 
0.986 
0.706 
0.843 
0.520 
0.314 
0.225 
0.268 
0.165 
0.100 
0.07 1 
0.085 
0.052 
0.032 
0.023 
0.027 
0.017 
0.010 
0.007 
0.009 
0.005 
0.003 
0.002 

5. Conclusion 

The advantage of our method of finite box approximation is that the eigenvalues are 
obtained from a single equation for both positive and negative values of p and A as 
long as 7 is positive. When p = A = - 2  and 7 = 1 the condition ( 1  1 )  is satisfied for 
n = I and v = O  (even parity solution). The corresponding exact eigenvalue is 
E = - p  = - 1 which can be compared with the value obtained by the series method 
(table 1). We have shown in § 2 that the Hill determinant method of Singh et a1 (1978) 
produces no  positive eigenvalue under this condition. However, we find in 9 3 that 
the first excited even parity eigenvalue is 3.6281 which clearly shows that the conjecture 
of Singh et a1 is not correct for this case. 

The Hill determinant method of Biswas er a1 (1973) produces the eigenvalues of 
x2 + TX‘ oscillator to a high degree of accuracy when 7 s 100. The method, however, 
becomes unreliable for T > 100 because of the large truncation error in the numerical 
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computation. The method described here is simple and accurate for numerical evalu- 
ation of the eigenvalues of the anharmonic oscillator for any value, however large, of 
the coupling constants. 
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